ID:2037 Molecular mechanisms underlying resistance to MEK1/2 inhibitor in BRAF-mutated colorectal cancer
DOI:
https://doi.org/10.15419/bmrat.v4iS.276Keywords:
Cancer, Colorectal cancer, Resistance, MEK1/2 inhibitor, BRAFAbstract
Colorectal carcinomas are characterized by multiple genetic alterations, including constitutive Wnt activity and gain-of-function mutations in K-RAS and B-RAF. BRAF encodes a Ser/Thr kinase acting in the Ras/MEK/ERK pathway and the V600E mutation found in 11% of colorectal cancers renders this kinase constitutively active. B-RAF mutated colorectal carcinomas represents a very aggressive entity with a poor prognosis. Understanding the molecular mechanisms activated downstream of mutated B-RAF is urgently needed to design new therapeutic avenues to treat B-ARF mutated colorectal carcinomas and to circumvent resistance to therapies targeting the Ras/Raf/MEK1/ERK1/2 pathway. In a search for candidates that critically contribute to both intrinsic and acquired resistance to MEK1 inhibition in B-RAF mutated colorectal cancer cells, we identified one scaffold protein whose expression is driven by both NF-kB and AP-1 families of transcription factors. This scaffold protein promotes the expression of HER2 and HER3 in colorectal cancer cells subjected to MEK1 or B-RAF inhibition (Selumetinib and Vemurafenib, respectively) and, as such, is critically involved in the intrinsic resistance to these targeted therapies. The same scaffold protein is also strongly induced in B-RAF but not K-RAS mutated colorectal cancer cells showing acquired resistance to MEK1 inhibition. Interfering with the expression of this scaffold protein circumvents both intrinsic and acquired resistance to Selumetinib in B-RAF mutated colorectal cancer cells. Our study defines a new molecular actor critically involved in oncogenic signaling pathways triggered by mutated B-RAF. Our study also defineS new combinatory therapies to better treat B-RAF-mutated colorectal carcinomas.
Downloads
Published
Issue
Section
License
Copyright The Author(s) 2017. This article is published with open access by BioMedPress. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0) which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.