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A B S T R A C T 

Neural stem cells exist in the mammalian nervous system. Despite extensive research to improve methods for isolation, propagation and 
differentiation of these cells, the clinical application of the in vitro expanded neural stem cells has remained challenging. Specifically, these 
challenges include heterogeneity of neural stem cell progeny, limited neuronal cell yield both in number and phenotype, paucity of 
oligodendroglial cells, and predominant astroglial differentiation in vitro and after transplantation. Moreover, uncontrolled proliferation and 
tumorigenicity of the undifferentiated progeny possibly limit the clinical application of neural stem cells. Here, we propose using defined neural 
cell populations as a main solution. 
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Introduction 

The ground-breaking discovery of neural stem 
cells (NSCs) in adult central nervous system (CNS) 
(Reynolds and Weiss, 1992) has led to a promising 

avenue of research for cell therapy in devastating 
neurological diseases. Neural stem cells mainly reside in 
the subventricular areas of the CNS along the ventricular 
neuraxis (Golmohammadi et al., 2008). These cells are 
capable of long-term self-renewal, unlimited cell divisions, 
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and production of a large number of progeny. Although 
our understanding of the biology and physiology of NSCs 
has significantly increased, still we are far away from safe, 
universally-accepted and standardized approaches for 
clinical application of neural stem cells. In this short 
commentary I will focus on some of the main problems 
associated with therapeutic application of NSCs and 
propose the generation of defined neural cell populations 
as a main solution for a successful stem cell therapy 
regimen. 

Neural stem cells are a heterogeneous cell 
population 

Neural stem and progenitor cells are commonly 
isolated and propagated from adult and fetal neural tissue 
using the neurosphere assay (NSA) (Azari et al., 2010; 
Azari et al., 2011b; Reynolds and Weiss, 1992). 
Cytomorphological analysis of neurosphere-derived cells 
reveals that these cells are very heterogeneous in their 
phenotype, size, granularity, cytoplasmic content and are 
in different phases of the cell cycle (Bez et al., 2003). 
Subsequently, in vitro differentiation of NSC progeny 
gives rise to many different cells including neuronal and 
glial progenitor cells, and also undifferentiated bona fide 
NSCs. This is even more problematic when the 
undifferentiated NSC progeny are directly implanted into 
various diseased environments with no control over NSC 
fate decisions while particular neural cell types are 
needed (Hofstetter et al., 2005). 

Limited neuronal cell yield, in number and 
phenotype upon neural stem cell 
differentiation 

For therapeutic applications, increasing neuronal 
yield of NSCs and generating a variety of different 
neuronal phenotypes is important. For instance, while 
culturing NSCs at low levels of oxygen can increase 
neuronal differentiation (Panchision, 2009; Ross et al., 
2012), overexpressing particular transcription factors such 
as Nurr1, Fezf2 can change the ultimate fate of the 
resulting neurons (Tan et al., 2011; Zuccotti et al., 2014). 
Despite successful increases in both neuronal cell yield 
and derivation of the needed neuronal phenotypes 

employing the above-mentioned protocols, the resulting 
cells are still contaminated with un-desirable NSC 
progeny and do not serve as a safe and efficient cell 
source for clinical applications. 

Neural stem cells predominantly 
differentiate into astroglial cells in-vitro and 
upon transplantation into target CNS tissue 

The main goals of cell therapy for CNS injuries are 
to support the injured cells, replace the lost cells and re-
establish the disrupted circuitries in order to restore the 
lost function. Toward these ends, proportionate 
differentiation and synergistic action of all three NSC 
progeny, namely the neurons, astrocytes and 
oligodendroglial cells is needed. However, the majority of 
NSC progeny differentiate into glial fibrillary acidic protein 
(GFAP) expressing astrocytes both in vitro and upon 
transplantation. Moreover, astroglial differentiation is more 
pronounced when the undifferentiated NSCs are 
implanted directly into a lesioned CNS environment 
(Karimi-Abdolrezaee et al., 2010). Astrocytic 
differentiation of implanted NSCs can cause many 
undesirable side effects including pain and 
hypersensitivity (Hofstetter et al., 2005).  

Uncontrolled proliferation and tumor 
formation of neural stem cells upon 
transplantation 

Usually the animal studies of NSC transplantation 
are short-term studies and do not focus on the long-term 
proliferative potential of these cells after implantation. 
However, some long term studies showed that NSCs 
could actively proliferate even six months after 
implantation despite the hostile environment of the 
diseased CNS tissue, so that the number of donor cells 
remains the same or even higher than the number of cells 
that were initially transplanted (Yan et al., 2007). 
Furthermore, some reports indicate that implantation of 
undifferentiated human NSCs can cause tumors 
(Amariglio et al., 2009). Therefore, implementing 
strategies to minimize the risk of tumor formation by 
transplanted NSC progeny is critical. 
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Defined neural cell populations, a main 
possible solution 

Highly purified neural cell populations, i.e., 
dopaminergic, GABAergic, glutamatergic, noradrenergic 
neuronal cells, oligodenroglial and astroglial progenitor 
cells can be yielded from a renewable source of NSCs. 
This enables us to study the effects that each particular 
neural cell or combination of different neural cell types at 
pre-defined ratios has on the disease progress, and to 
understand the underlying mechanisms. This eventually 
can lead to formulating the best neural cell type 
combinations and dosing strategies for different diseases 
depending on the stage and the nature of the disease to 
be treated. To benefit from the NSC therapy for different 
CNS diseases, using defined neural cell populations also 
lowers the risk of post-transplantation complications. 

To this end, we have recently established protocols 
for the differentiation and subsequent purification of 
neuronal progenitors from fetal mouse NSC progeny. 
Using these strategies, we can successfully generate 
nearly 100% homogeneous immature neuronal cells that 
are able to differentiate into fully functional mature 
neurons both in vitro and upon transplantation into the 
CNS, showing no active sign of uncontrolled proliferation 
and tumor formation (Azari et al., 2011a; Azari et al., 
2014). Application of the same strategy to human fetal 
NSCs is also very promising and we can generate human 
neurons in large-scale and near to 100% homogeneity 
(unpublished data). 

 

Conclusion 

NSCs hold great promise in the treatment of CNS 
diseases, as they are capable of generating all three main 
cell populations of the CNS tissue. Advancement in 
technologies and development of new methodologies for 
consistent large-scale generation of defined neural cell 
populations will pave the way for successful and safe 
therapeutic application of these cells in the treatment of 
many devastating neurological diseases in the near 
future.  
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