ID: 1038 Hydrothermal synthesis of carbon nanodots from millets for cancer cells imaging
DOI:
https://doi.org/10.15419/bmrat.v4iS.314Keywords:
Biomedical application, Cancer, Carbon nanodots, human cervical cancer cells, Hydrothermal method, lung cancer cells, Millets, Natural biomass, PhotoluminescenceAbstract
We presented a green, simple and economical method to synthesize carbon nanodots (C-dots) from millets using hydrothermal synthesis route. The obtained C-dots have average diameter ranging from 6 to 8 nm. Optical measurements showed the formation of hydroxyl, carbonyl/carboxyl, amino functional groups on the particle surfaces, resulting in their high hydrophilicity and bioconjugation. After treatment with C-dots, human cervical and lung cancer cells became bright and exhibited multicolor fluorescence under different excitation wavelength. The achievement demonstrated potential applications of fluorescent C-dots in the field of biomedical application, especially in diagnostic disease techniques.
References
3) He Y, Lu HT, Sai LM, Su YY, Hu M, Fan CH, Huang W, Wang LH (2008) Microwave synthesis of water-dispersed CdTe/CdS/ZnS core-shell-shell quantum dots with excellent photostability and biocompatibility. Adv Mater 20(18):3416–3421
4) Sheila NB and Gary AB (2010) Luminescent carbon nanodots: emergent nanolights. Angew. Chem. Int. Ed. 49:6726 – 6744
5) Haitao L, Zhenhui K, Yang L and Shuit TL (2012) Carbon nanodots: synthesis, properties and applications. J. Mater. Chem 22:24230–24253
Downloads
Published
Issue
Section
License
Copyright The Author(s) 2017. This article is published with open access by BioMedPress. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0) which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.